Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124.532
Filter
1.
Front Public Health ; 12: 1365470, 2024.
Article in English | MEDLINE | ID: mdl-38562254

ABSTRACT

Introduction: Research on the outdoor thermal comfort (OTC) of a university campus is beneficial to the physical and mental health of college students. Methods: In this study, the OTC of students attending Tibet University in Lhasa, which experiences high-altitude cold climate conditions, under different activity intensities was studied using field measurements and a questionnaire survey. Results: With the increase in activity intensity, the comfort physiologically equivalent temperature (PET) value gradually increased in summer, while the comfortable PET value gradually decreased in winter. The most comfortable PET value is 17.6°C in summer and 11.5°C in winter. The neutral PET of Tibetan college students during outdoor activities in summer was 16.3°C, and the neutral PET of outdoor activities in winter was 12.1°C. Gender and ethnicity had different effects on thermal sensation under different activity intensities. Under vigorous-intensity activities, PET in winter and summer had the greatest influence on thermal sensation. The situation was different under moderate-intensity activity. PET had the greatest influence on thermal sensation in summer, and Tmrt had the greatest influence on thermal sensation in winter. Discussion: These findings provide a basis for an improved design of the outdoor environment under different outdoor activity intensities in high-altitude areas.


Subject(s)
Altitude , Climate , Humans , Seasons , Temperature , Surveys and Questionnaires
2.
Can Vet J ; 65(4): 335-342, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38562984

ABSTRACT

Objective: To characterize concentrations of adrenocorticotropic hormone (ACTH), insulin, and thyroxine (T4) at 2 times of the year in healthy horses in Saskatchewan. Animals and procedure: A prospective, observational study was carried out in 52 healthy, client-owned horses. Inclusion criteria were no recent travel outside of Saskatchewan, normal physical examination findings, and no history or evidence of ongoing illness. Blood concentrations of ACTH, insulin and T4 were determined by chemiluminescence. Samples were collected in spring and fall and compared using the paired Student's t-test or Wilcoxon signed-rank test. Generalized estimating equations were used to assess the associations between ACTH, T4, and insulin concentrations and gender, age, season, body condition score, glucose concentration, and breed. Results: There were increases in both ACTH and insulin concentrations in the fall compared to spring (P < 0.001 and P = 0.001, respectively). Other than season, insulin concentration was associated with breed, whereas ACTH concentration was associated with age. Finally, T4 concentration was associated with breed and glucose concentration, but not with season. Conclusion and clinical relevance: These results highlighted the differences between spring and fall concentrations of both ACTH and insulin in healthy horses residing in the Canadian prairie provinces, which are known for extreme differences in summer and winter temperatures as well as day length. Geographically adjusted reference values are necessary to account for these variations, to improve diagnostic accuracy. This is the first published Canadian study evaluating these factors and their associations with hormone concentrations in clinically healthy animals.


Concentrations sanguines printanières et automnales d'hormone adrénocorticotrope, d'insuline et de thyroxine chez des chevaux en bonne santé en Saskatchewan. Objectif: Caractériser les concentrations d'hormone adrénocorticotrope (ACTH), d'insuline et de thyroxine (T4) à 2 moments de l'année chez des chevaux en bonne santé en Saskatchewan. Animaux et procédure: Une étude observationnelle prospective a été réalisée auprès de 52 chevaux en bonne santé appartenant à des clients. Les critères d'inclusion étaient l'absence de voyage récent à l'extérieur de la Saskatchewan, les résultats normaux de l'examen physique et l'absence d'antécédents ou de signes de maladie persistante. Les concentrations sanguines d'ACTH, d'insuline et de T4 ont été déterminées par chimiluminescence. Des échantillons ont été collectés au printemps et à l'automne et comparés à l'aide du test de Student apparié ou du test du rang de signe de Wilcoxon. Des équations d'estimation généralisées ont été utilisées pour évaluer les associations entre les concentrations d'ACTH, de T4 et d'insuline et le sexe, l'âge, la saison, l'état corporel, la concentration de glucose et la race. Résultats: Il y avait une augmentation des concentrations d'ACTH et d'insuline à l'automne par rapport au printemps (P < 0,001 et P = 0,001, respectivement). Hormis la saison, la concentration d'insuline était associée à la race, alors que la concentration d'ACTH était associée à l'âge. Enfin, la concentration de T4 était associée à la race et à la concentration en glucose, mais pas à la saison. Conclusion et pertinence clinique: Ces résultats ont mis en évidence les différences entre les concentrations printanières et automnales d'ACTH et d'insuline chez les chevaux en bonne santé résidant dans les provinces des Prairies canadiennes, reconnues pour leurs différences extrêmes de températures estivales et hivernales ainsi que de durée du jour. Des valeurs de référence géographiquement ajustées sont nécessaires pour tenir compte de ces variations et améliorer la précision du diagnostic. Il s'agit de la première étude canadienne publiée évaluant ces facteurs et leurs associations avec les concentrations d'hormones chez des animaux cliniquement sains.(Traduit par Dr Serge Messier).


Subject(s)
Adrenocorticotropic Hormone , Insulin , Humans , Horses , Animals , Thyroxine , Seasons , Saskatchewan , Prospective Studies , Glucose
3.
Physiol Plant ; 176(2): e14265, 2024.
Article in English | MEDLINE | ID: mdl-38556740

ABSTRACT

Plant species distribution across ecosystems is influenced by multiple environmental factors, and recurrent seasonal stress events can act as natural selection agents for specific plant traits and limit species distribution. For that, studies aiming at understanding how environmental constraints affect adaptive mechanisms of taxonomically closely related species are of great interest. We chose two Scabiosa species inhabiting contrasting environments: the coastal scabious S. atropurpurea, typically coping with hot-dry summers in a Mediterranean climate, and the mountain scabious S. columbaria facing cold winters in an oceanic climate. A set of functional traits was examined to assess plant performance in these congeneric species from contrasting natural habitats. Both S. atropurpurea and S. columbaria appeared to be perfectly adapted to their environment in terms of adjustments in stomatal closure, CO2 assimilation rate and water use efficiency over the seasons. However, an unexpected dry period during winter followed by the typical Mediterranean hot-dry summer forced S. atropurpurea plants to deploy a set of photoprotective responses during summer. Aside from reductions in leaf water content and Fv/Fm, photoprotective molecules (carotenoids, α-tocopherol and anthocyanins) per unit of chlorophyll increased, mostly as a consequence of a severe chlorophyll loss. The profiling of stress-related hormones (ABA, salicylic acid and jasmonates) revealed associations between ABA and the bioactive jasmonoyl-isoleucine with the underlying photoprotective response to recurrent seasonal stress in S. atropurpurea. We conclude that jasmonates may be used together with ABA as a functional trait that may, at least in part, help understand plant responses to recurrent seasonal stress in the current frame of global climate change.


Subject(s)
Anthocyanins , Cyclopentanes , Ecosystem , Oxylipins , Seasons , Chlorophyll , Plant Leaves/physiology , Water
4.
Sci Rep ; 14(1): 7727, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565931

ABSTRACT

Small islands tend to lack predators because species at higher trophic levels often cannot survive. However, two exceptional top predators-the Iriomote cat Prionailurus bengalensis iriomotensis, and the Crested Serpent Eagle Spilornis cheela perplexus-live on the small Iriomote Island in the Ryukyu Archipelago. To understand how these predators coexist with limited resources, we focused on their seasonal diets between which conflicts are considered to occur. To compare the diets, we used DNA metabarcoding analysis of faecal samples. In the summer, we identified 16 unique prey items from Iriomote cat faecal samples and 15 unique prey items from Crested Serpent Eagle faecal samples. In the winter, we identified 37 and 14, respectively. Using a non-metric multidimensional scaling and a permutational multivariate analysis of variance, our study reveals significant differences in the diet composition at the order level between the predators during both seasons. Furthermore, although some prey items at the species-to-order level overlapped between them, the frequency of occurrence of most prey items differed in both seasons. These results suggest that this difference in diets is one of the reasons why the Iriomote cat and the Crested Serpent Eagle are able to coexist on such a small island.


Subject(s)
Diet , Japan , Seasons
5.
PLoS One ; 19(4): e0282374, 2024.
Article in English | MEDLINE | ID: mdl-38568901

ABSTRACT

The waters around the Galápagos Marine Reserve (GMR) are important fishing grounds for authorized artisanal vessels fishing within the reserve as well as for national and foreign industrial fleets operating in the wider Ecuadorian Insular Exclusive Economic Zone (IEEZ). Although it was not originally designed for fisheries management, Automatic Identification System (AIS) data provides useful, open access, near real-time and high-resolution information that allows for increased monitoring, particularly around Marine Protected Areas (MPAs) and in Areas Beyond National Jurisdiction. This study uses AIS data provided by Global Fishing Watch to assess the spatial distribution and seasonal dynamics of fishing effort by vessel flag within the GMR and the IEEZ from 2012 to 2021. Based on kernel density estimation analysis, we determinate the core-use areas (50%) and spatial extent (95%) of fishing activities by fleets (Ecuadorian and foreign), gear types and seasons (warm, from December to May; and cold, from June to November). Our results show that the Ecuadorian fleet recorded the most observed fishing hours in the study area, with 32,829 hours in the IEEZ and 20,816 hours within the GMR. The foreign flags with the most observed fishing hours in the IEEZ were Panama (3,245 hours) and Nicaragua (2,468.5 hours), while in the GMR were the 'Unknown flag' (4,991.4 hours) and Panama (133.7 hours). Vessels fished employing different fishing gears, but the waters of the GMR and IEEZ were mostly targeted by tuna purse-seiners and drifting longlines. The spatial distribution of the fishing effort exhibits marked seasonal variability, likely influenced by seasonal migrations of target species such as tunas (e.g., Thunnus albacares, T. obesus and Katsuwonus pelamis), marlins (e.g., Makaira nigricans) and sharks (e.g., Alopias pelagicus). The collection and use of this type of spatial and seasonal information is an essential step to understand the dynamics of fishing activities in national waters and improve fisheries management, particularly in less studied areas and fisheries.


Subject(s)
Hunting , Sharks , Animals , Seasons , Tuna , Fisheries , Conservation of Natural Resources
7.
Environ Monit Assess ; 196(5): 419, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570389

ABSTRACT

Seasonally astatic aquatic habitats are important ecologically, municipally, and agriculturally. Regulatory agencies and conservation organizations have developed various plans for protecting or constructing temporary wetlands, resulting in habitat monitoring requirements, particularly as relates to restoration and constructed habitats. Unfortunately, there has been no effort to develop a unified, consistent method for wetland biological monitoring. This is particularly true for habitats important in a regulatory sense. We conducted macroinvertebrate bioassessment in constructed vernal pools in California, USA, to assess habitat functionality. This tool is modified from aquatic bioassessment; a primary tool of regulatory agencies in measuring habitat health and water quality and should be equally applicable to seasonally astatic wetlands globally.


Subject(s)
Ecosystem , Environmental Monitoring , Wetlands , Seasons , Water Quality
8.
Environ Monit Assess ; 196(5): 426, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573396

ABSTRACT

This article, based on OMI data products, utilizes spatial distribution, ozone-sensitive control areas, Pearson correlation methods, and the Ben-MAP model to study the changes in ozone column concentration from 2018 to 2022, along with the influencing factors and the health of populations exposed to ozone. The findings suggest a spatial variation in the ozone column concentration within the study area, with an increasing trend observed from west to east and from south to north. Over time, the ozone column concentration exhibits an initial increase followed by a subsequent decrease, with the peak concentration observed in 2019 at 37.45 DU and the nadir recorded in 2022 at 33.10 DU. The monthly mean distribution exhibits an inverted V-shaped pattern during the warm season from April to September, with a peak in July (46.71 DU) and a trough in April (35.29 DU). The Hetao Plain Oasis area is primarily a NOx control area in sensitive control areas. The concentrations of O3 and precursor HCHO exhibited significant positive correlations with vegetation index and air temperature, while showing significant negative correlations with wind speed and air pressure. The precursor NO2, in contrast, exhibited a significant negative correlation with both the vegetation index and relative humidity. Based on the ground-based monitoring sites and analysis of human health benefits, the study area witnessed 1944.45 deaths attributed to warm season O3 exposure in 2018, with a subsequent reduction in premature deaths by 149.7, 588.2, and 231.75 for the years 2019 to 2021 respectively when compared to the baseline year. In 2021, the observed decrease in warm-season O3 concentration within that region compared to 2018 resulted in a significant reduction, leading to the prevention of 126 premature deaths.


Subject(s)
Environmental Monitoring , Ozone , Humans , Mortality, Premature , Ozone/toxicity , Seasons , Temperature
9.
J Med Virol ; 96(4): e29602, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597349

ABSTRACT

China experienced severe epidemics of multiple respiratory pathogens in 2023 after lifting "Zero-COVID" policy. The present study aims to investigate the changing circulation and infection patterns of respiratory pathogens in 2023. The 160 436 laboratory results of influenza virus and respiratory syncytial virus (RSV) from February 2020 to December 2023, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from June 2020 to December 2023, Mycoplasma pneumoniae, adenovirus, and human rhinovirus from January 2023 to December 2023 were analyzed. We observed the alternating epidemics of SARS-CoV-2 and influenza A virus (IAV), as well as the out-of-season epidemic of RSV during the spring and summer of 2023. Cocirculation of multiple respiratory pathogens was observed during the autumn and winter of 2023. The susceptible age range of RSV in this winter epidemic (10.5, interquartile range [IQR]: 5-30) was significantly higher than previously (4, IQR: 3-34). The coinfection rate of IAV and RSV in this winter epidemic (0.695%) was significantly higher than that of the last cocirculation period (0.027%) (p < 0.001). Similar trend was also found in the coinfection of IAV and SARS-CoV-2. The present study observed the cocirculation of multiple respiratory pathogens, changing age range of susceptible population, and increasing coinfection rates during the autumn and winter of 2023, in Beijing, China.


Subject(s)
Coinfection , Influenza A virus , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Retrospective Studies , Respiratory Tract Infections/epidemiology , Beijing/epidemiology , Seasons , Coinfection/epidemiology , China/epidemiology , SARS-CoV-2 , Influenza, Human/epidemiology , Respiratory Syncytial Virus Infections/epidemiology
10.
An Acad Bras Cienc ; 96(1): e20220413, 2024.
Article in English | MEDLINE | ID: mdl-38597497

ABSTRACT

This study aimed to analyze the application of the Phytoplankton Community Index-PCI and Functional Groups-FG in determining the water quality of the Guamá River (Pará, Amazônia, Brazil). Samplings occurred monthly for analyses of phytoplankton and physical and chemical parameters, for two years, at the station where water was collected for human supply consumption. Seasonality influenced electrical conductivity, total suspended solids, dissolved oxygen, transparency, winds, true color, and N-ammoniacal. The ebb tide showed high turbidity and suspended solids. The density varied seasonally with the highest values occurring in September and December (61.1 ind mL-1 and 60.2 ind mL-1, respectively). Chlorophyll-a was more elevated in December (21.0 ± 4.7 µg L-1) and chlorophyll-c higher in relation to clorophyll- b indicated the dominance of diatoms. Functional Group P prevailed in the study months. Through the PCI índex the waters of Guamá River varied from reasonable to excellent and the TSI ranged from oligo to mesotrophic. The use of Functional Groups proved to be a promising tool in the determination of water quality since it covered the most abundant species in the Environment, but the PCI is not adequate to characterize Amazonian white-waters rivers, which have diatoms as the leading dominant group.


Subject(s)
Diatoms , Percutaneous Coronary Intervention , Humans , Phytoplankton , Rivers/chemistry , Brazil , Chlorophyll/analysis , Seasons , Environmental Monitoring
11.
Scand J Med Sci Sports ; 34(4): e14617, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566409

ABSTRACT

PURPOSE: In Football, the high-intensity running bouts during matches are considered decisive. Interestingly, recent studies showed that peak fat oxidation rates (PFO) are higher in football players than other athletes. This study aimed to investigate whether PFO increases following a pre-season. Secondarily, and due to COVID-19, we investigated whether PFO is related to the physical performance in a subgroup of semi-professional male football players. METHODS: Before and after 8 weeks of pre-season training, 42 sub-elite male football players (18 semi-professionals and 24 non-professionals) had a dual-energy x-ray absorptiometry scan and performed a graded exercise test on a treadmill for the determination of PFO, the exercise intensity eliciting PFO (Fatmax) and peak oxygen uptake (V̇O2peak). Additionally, the semi-professional players performed a Yo-Yo Intermittent Recovery Test level 2 (YYIR2) before and after pre-season training to determine football-specific running performance. RESULTS: PFO increased by 11 ± 10% (mean ± 95% CI), p = 0.031, and V̇O2peak increased by 5 ± 1%, p < 0.001, whereas Fatmax was unchanged (+12 ± 9%, p = 0.057), following pre-season training. PFO increments were not associated with increments in V̇O2peak (Pearson's r2 = 0.00, p = 0.948) or fat-free mass (FFM) (r2 = 0.00, p = 0.969). Concomitantly, YYIR2 performance increased in the semi-professional players by 39 ± 17%, p < 0.001, which was associated with changes in V̇O2peak (r2 = 0.35, p = 0.034) but not PFO (r2 = 0.13, p = 0.244). CONCLUSIONS: PFO, V̇O2peak, and FFM increased following pre-season training in sub-elite football players. However, in a subgroup of semi-professional players, increments in PFO were not associated with improvements in YYIR2 performance nor with increments in V̇O2peak and FFM.


Subject(s)
Athletic Performance , Running , Soccer , Humans , Male , Exercise Test , Oxygen , Seasons
12.
Ital J Pediatr ; 50(1): 65, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589886

ABSTRACT

BACKGROUND: Respiratory Syncytial Virus (RSV) is responsible for the majority of acute lower respiratory infections in infants and can affect also older age groups. Restrictions linked to the emergence of the SARS-CoV-2 pandemic and their subsequent lifting caused a change in the dynamics of RSV circulation. It is therefore fundamental to monitor RSV seasonal trends and to be able to predict its seasonal peak to be prepared to the next RSV epidemics. METHODS: We performed a retrospective descriptive study on laboratory-confirmed RSV infections from Bambino Gesù Children's Hospital in Rome from 1st January 2018 to 31st December 2022. Data on RSV-positive respiratory samples (n = 3,536) and RSV-confirmed hospitalizations (n = 1,895) on patients aged 0-18 years were analyzed. In addition to this, a SARIMA (Seasonal AutoRegressive Integrated Moving Average) forecasting model was developed to predict the next peak of RSV. RESULTS: Findings show that, after the 2020 SARS-CoV-2 pandemic season, where RSV circulation was almost absent, RSV infections presented with an increased and anticipated peak compared to pre-pandemic seasons. While mostly targeting infants below 1 year of age, there was a proportional increase in RSV infections and hospitalizations in older age groups in the post-pandemic period. A forecasting model built using RSV weekly data from 2018 to 2022 predicted the RSV peaks of 2023, showing a reasonable level of accuracy (MAPE 33%). Additional analysis indicated that the peak of RSV cases is expected to be reached after 4-5 weeks from case doubling. CONCLUSION: Our study provides epidemiological evidence on the dynamics of RSV circulation before and after the COVID-19 pandemic. Our findings highlight the potential of combining surveillance and forecasting to promote preparedness for the next RSV epidemics.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Child , Humans , Aged , Respiratory Syncytial Virus Infections/epidemiology , Seasons , Retrospective Studies , Pandemics , Hospitals, Pediatric , Italy/epidemiology
13.
Zoolog Sci ; 41(2): 192-200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587914

ABSTRACT

Assessing the impacts of parasites on wild fish populations is a fundamental and challenging aspect of the study of host-parasite relationships. Salmincola, a genus of ectoparasitic copepods, mainly infects salmonid species. This genus, which is notorious in aquaculture, damages host fishes, but its impacts under natural conditions remain largely unknown or are often considered negligible. In this study, we investigated the potential impacts of mouth-attaching Salmincola markewitschi on white-spotted charr (Salvelinus leucomaenis) through intensive field surveys across four seasons using host body condition as an indicator of harmful effects. The prevalence and parasite abundance were highest in winter and gradually decreased in summer and autumn, which might be due to host breeding and/or wintering aggregations that help parasite transmissions. Despite seasonal differences in prevalence and parasite abundance, consistent negative correlations between parasite abundance and host body condition were observed across all seasons, indicating that the mouth-attaching copepods could reduce the body condition of the host fish. This provides field evidence suggesting that S. markewitschi has a potential negative impact on wild white-spotted charr.


Subject(s)
Copepoda , Fish Diseases , Parasitic Diseases , Animals , Trout , Seasons , Aquaculture , Fish Diseases/parasitology
14.
PLoS One ; 19(4): e0299771, 2024.
Article in English | MEDLINE | ID: mdl-38593139

ABSTRACT

Niger is highly vulnerable to rainfall variability, often with adverse socioeconomic consequences. This study examined observed subseasonal rainfall variability during Niger's monsoon season (May to September). Using k-means clustering of dekadal (ten-day) rainfall, a typology was developed for the annual evolution of the monsoon season. Year-to-year rainfall variability for each of the first few dekads of the season is modest, but the middle, or peak of the rainy season demonstrates large interannual variability. Clustering analysis of annual timeseries for each dekad of the season revealed two types of monsoon progression. The distinction between the two types is strongly dependent on differences during the latter half of the season. For the first and third ten-day periods in August, and the first ten days in September, the two groups of years are more distinct. These results imply that while reliable prediction of the timing of anomalous onsets will be challenging, due to the relatively narrow range of uncertainty historically, there are opportunities for further exploration of dynamic and or statistical predictors or precursors using this typology that could potentially provide better information for decision-makers, especially with respect to agriculture.


Subject(s)
Agriculture , Rain , Niger , Seasons
15.
Influenza Other Respir Viruses ; 18(4): e13289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38637994

ABSTRACT

BACKGROUND: The interpretation of relative vaccine effectiveness (rVE) of improved influenza vaccines is complex. Estimation of burden averted is useful to contextualise their potential impact across different seasons. For the population aged under 65 years in Australia, this study estimated the additional morbidity and mortality that could be averted using improved influenza vaccines. METHODS: We used observed, season-specific (2015-2019) influenza notification and influenza-coded hospitalisation frequencies and published modelled estimates of influenza-associated hospitalisations and deaths that occurred under the prevailing influenza vaccination coverage scenario. After back-calculating to the estimated burden in the population without vaccination, we applied published standard influenza vaccine effectiveness and coverage estimates to calculate the burden potentially averted by standard and improved influenza vaccines. A plausible range of rVE values were used, assuming 50% coverage. RESULTS: The percentage point difference in absolute vaccine effectiveness (VE) of an improved vaccine compared to a standard vaccine is directly proportional to its rVE and inversely proportional to the effectiveness of the standard vaccine. The incremental burden averted by an improved vaccine is a function of both its difference in absolute VE and the severity of the influenza season. Assuming an rVE of 15% with 50% coverage, the improved vaccine was estimated to additionally avert 1517 to 12,641 influenza notifications, 287 to 1311 influenza-coded hospitalisations and 9 to 33 modelled all-cause influenza deaths per year compared to the standard vaccine. CONCLUSIONS: Improved vaccines can have substantial clinical and population impact, particularly when the effectiveness of standard vaccines is low, and burden is high.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Aged , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Australia/epidemiology , Vaccination
16.
Malar J ; 23(1): 112, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641572

ABSTRACT

BACKGROUND: In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogeneity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate effects of seasonality on malaria transmission. METHODS: We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per community, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small subunit of the 18S rRNA. RESULTS: Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not significantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to biting throughout the night (i.e., 18:00-06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 (0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females during the rainy season. CONCLUSIONS: These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before midnight, irrespective of whether the community was located adjacent to the highway or along the river.


Subject(s)
Anopheles , Bites and Stings , Malaria, Falciparum , Malaria, Vivax , Malaria , Plasmodium , Animals , Female , Humans , Anopheles/genetics , Malaria/epidemiology , Peru/epidemiology , Mosquito Vectors , Malaria, Vivax/epidemiology , Seasons
17.
Environ Monit Assess ; 196(5): 463, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642156

ABSTRACT

In this study, the levels of sulfur dioxide (SO2) and nitrogen dioxide (NO2) were measured indoors and outdoors using passive samplers in Tymar village (20 homes), an industrial area, and Haji Wsu (15 homes), a non-industrial region, in the summer and the winter seasons. In comparison to Haji Wsu village, the results showed that Tymar village had higher and more significant mean SO2 and NO2 concentrations indoors and outdoors throughout both the summer and winter seasons. The mean outdoor concentration of SO2 was the highest in summer, while the mean indoor NO2 concentration was the highest in winter in both areas. The ratio of NO2 indoors to outdoors was larger than one throughout the winter at both sites. Additionally, the performance of machine learning (ML) approaches: multiple linear regression (MLR), artificial neural network (ANN), and random forest (RF) were compared in predicting indoor SO2 concentrations in both the industrial and non-industrial areas. Factor analysis (FA) was conducted on different indoor and outdoor meteorological and air quality parameters, and the resulting factors were employed as inputs to train the models. Cross-validation was applied to ensure reliable and robust model evaluation. RF showed the best predictive ability in the prediction of indoor SO2 for the training set (RMSE = 2.108, MAE = 1.780, and R2 = 0.956) and for the unseen test set (RMSE = 4.469, MAE = 3.728, and R2 = 0.779) values compared to other studied models. As a result, it was observed that the RF model could successfully approach the nonlinear relationship between indoor SO2 and input parameters and provide valuable insights to reduce exposure to this harmful pollutant.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Sulfur Dioxide/analysis , Nitrogen Dioxide/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Seasons , Air Pollution, Indoor/analysis
19.
J Environ Manage ; 357: 120732, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560954

ABSTRACT

Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Sewage/analysis , Waste Disposal, Fluid , Seasons , Water Pollutants, Chemical/analysis , Environmental Monitoring , Anti-Bacterial Agents/analysis , Risk Assessment , Macrolides/analysis , Pharmaceutical Preparations
20.
J Environ Manage ; 357: 120765, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579467

ABSTRACT

Livestock grazing strongly influences the accumulation of soil organic carbon (SOC) in grasslands. However, whether the changes occurring in SOC content under different intensities of continuous summer long grazing are associated with the changes in microbially-derived necromass C remains unclear. Here, we established a sheep grazing experiment in northern China in 2004 with four different stocking rates. Soil samples were collected after 17 years of grazing and analyzed for physical, chemical, and microbial characteristics. Grazing decreased SOC and microbial necromass carbon (MNC). Notably, grazing also diminished contributions of MNC to SOC. MNC declined with decreasing plant carbon inputs with degradation of the soil environment. Direct reductions in microbial necromass C, which indirectly reduced SOC, resulted from reduced in plant C inputs and microbial abundance and diversity. Our study highlights the key role of stocking rate in governing microbial necromass C and SOC and the complex relationships these variables.


Subject(s)
Grassland , Soil , Animals , Sheep , Soil/chemistry , Carbon/analysis , Seasons , Nitrogen/analysis , Plants , China , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...